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Abstract

We propose stabilized interior penalty discontinuous Galerkin methods for the indefinite
time–harmonic Maxwell system. The methods are based on a mixed formulation of the
boundary value problem chosen to provide control on the divergence of the electric field.
We prove optimal error estimates for the methods in the special case of smooth coefficients
and perfectly conducting boundary using a duality approach.
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1 Introduction

The numerical solution of the time-harmonic Maxwell’s equations presents a num-
ber of challenges. First, away from boundaries and material interfaces, the solution
is smooth and oscillatory. The need to approximate the oscillations requires a suffi-
ciently fine grid compared to the wave-length of the solution, and results in a large
number of degrees of freedom if many wavelengths are contained in the domain of
interest. This requirement can be loosened (but not entirely avoided) by the use of
high order methods [1,2], so that it is desirable to use high order methods where
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the solution is smooth. A second problem is that at the boundary of the domain
the solution can be singular [3]. Indeed, on a non-convex polyhedral domain the
straightforward application of continuous finite element methods can result in a dis-
crete solution that converges to a vector function that is not a solution of Maxwell’s
equations [4]. While it is possible to modify the variational form to correct for this
failure [5], a similar problem also occurs at interfaces between different materials.
This is because at discontinuities in the electric properties of the materials in the
domain of the electromagnetic field, the electric field is discontinuous. Thus con-
tinuous elements need to be modified at such interfaces. A third problem, which
we will not discuss here, is the numerical solution of the sparse indefinite matrix
problem resulting from the finite element discretization.

Considerations of the first two problems mentioned above have lead to a wide-
spread adoption of edge finite elements [6,7] for the discretization of the time-
harmonic Maxwell’s equations. For an engineering view of such elements, a good
summary is contained in the books [8,9]. An error analysis of these elements has
been given in [10–12] and the profound connection between these elements and
differential forms has been noted for example in [13–15]. Perhaps the main problem
with such elements is that they become rather complex as the order of the elements
is increased, and like all conforming methods they require a suitable finite element
grid which complicates implementing adaptive solvers. Nevertheless, adaptive

���
-

finite element solvers have been implemented and show considerable promise [16].

In this paper we propose a new way to discretize the indefinite time-harmonic
Maxwell system based on a discontinuous Galerkin method (denoted DG in the
remainder of the paper). In particular, we propose a suitable extension of the in-
terior penalty methods to the Maxwell system. These methods date back at least
to [17–20] and have been studied for coercive elliptic and convection diffusion
problems more recently in [21–23]. We mention that several other DG methods for
standard coercive elliptic problems can be found in the literature (for instance the
LDG method [24,25] or the DG method introduced by Baumann and Oden [26,27])
and unified analyzes of discontinuous methods in the context of elliptic problems
have been presented in [28,29]. For the time-harmonic Maxwell equations in the
low-frequency regime, where the resulting bilinear forms are coercive, the LDG
methods have been recently investigated in [30].

Our goal is to produce a flexible solver in which the order of the scheme can be
changed easily between different regions of the grid. In addition we hope to exploit
the fact that DG grids do not need to be aligned in order to improve the efficiency
of wave propagation of the method. Thus in regions with different electromagnetic
properties (and hence different wave speeds), different grid sizes can be used to bal-
ance the propagation accuracy of the scheme in each subdomain. Finally it may be
possible to “tune” parameters in the DG scheme to improve propagation accuracy
(this is certainly possible in 1D one space dimension!).
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In this paper we prove basic error estimates for our proposed schemes under the
assumption of smoothly varying material properties. This assumption is needed for
certain a-priori estimates used in the analysis. Ultimately we hope to extend these
results to more general coefficients and boundary conditions, and we detail the
formulation in these cases.

Perhaps the closest approach in the literature to the DG methods we propose is the
ultra weak variational method of Cessenat [31]. While successful in practice, this
method is still incompletely understood on a theoretical level. For example con-
vergence is not proved for the standard perfectly electrically conducting boundary
condition (or near a singularity), or in general throughout the domain of compu-
tation. However the successful use of this method is one motivation for propos-
ing the methods in this paper which are convergent globally even in the presence
of boundary singularities. Another similar approach is the mortar finite element
method applied to the Maxwell equations [32]. To our knowledge, convergence has
not been proved for this method in the case of wave propagation. However the suc-
cess of this method applied to low frequency eddy current problems (in which case
the resulting bilinear forms are coercive) suggests that mortar methods or similar
domain decomposition methods could be useful for scattering problems [33]. An-
other domain decomposition approach is the FETI method applied to the Maxwell
equations [34]. A Lagrange multiplier based version of this method was analyzed
in [35] for the coercive Maxwell problem arising in time stepping. Again to our
knowledge, convergence has not been proved for this method in the case of wave
propagation in Maxwell’s equations.

The outline of our paper is as follows. In section 2, we start by detailing the mixed
formulation we shall use as the basis of the DG methods proposed here. We also
summarize some regularity and existence results. Then in section 3 we propose
the DG methods that are the subject of this paper. The main result of the paper
is an optimal a priori error bound that we present in section 4. Its proof is based
on a duality approach and is contained in section 5 and section 6. We end our
presentation with some concluding remarks in section 7.

2 A mixed formulation for the time-harmonic Maxwell equations

In this section, we introduce the time-harmonic Maxwell equations and present a
mixed formulation for the continuous problem which will be the basis for the DG
methods introduced here.
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2.1 Time-harmonic Maxwell’s equations

Let
�

be a bounded Lipschitz polyhedron in ��� with connected boundary � � . The
model problem we shall consider is to compute a time-harmonic electric field �
in the cavity

�
with perfectly conducting boundary. Let � denote the temporal

frequency of the time-harmonic field so that the corresponding time dependent field�
at position �
	 � and time � is given by

�
� ����������� � � � ��������� ��� � �!�����#"
Then �%$ �'& ( � satisfies the Maxwell system

)+*-,/. 
0 )+* � �21�3�4 0 �5�76 in
� � (1)

where
, 0 is the relative magnetic permeability and

4 0 is the relative electric permit-
tivity of the medium in the cavity

�
. We assume that

, 0 and
4 0 are real, smooth, and

uniformly positive functions of the position in
�

. In addition the real wave number1
is given by 1 �8�:9 4<;=,>; �

where
,>;

is the magnetic permeability and
4?;

is the electric permittivity of free
space. The source function 6 is related to the applied current density driving the
cavity and is assumed to be a given vector function in @ 3 � � � � .
The assumption that

�
has a perfectly conducting boundary gives the following

boundary condition on � � :

A * �2�7B on � � " (2)

Here A denotes the outward normal unit vector to � � .

Throughout the paper, we will assume that
1 3

is not an interior Maxwell eigenvalue
(see also Proposition 1 below), i.e., for any �+C�DB , the pair

�FE � 1 3 �=�:� is not an
eigensolution of the problem

)G*H, . 
0 )G* �I� EJ4 0 � in
�

, A * �I�KB on � � .
Note that this assumption would not be necessary if some region of

�
(containing

a ball of non-zero radius) had a non zero conductivity which would imply that the
imaginary part of

4 0 is positive there. Note also that in the special case considered
here the real and imaginary parts of the solution decouple, and hence we can assume
that � is real. If

4 0 is complex valued or if impedance boundary conditions are
imposed, the real and imaginary parts are coupled.

2.2 Mixed formulation

Our DG method is based on a mixed formulation of the Maxwell boundary value
problem (1)–(2). Such formulations have been used previously for edge element
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discretizations of Maxwell’s equations to improve stability [16], and to handle co-
ercive problems in which meshes are not aligned at a material boundary [35]. We
can derive this formulation by using a Helmholtz decomposition.

Given a domain
�

in � 3 or � � , we denote by ��� ��� ��� , � �	� ��
��
� , the Sobolev
space of real or complex scalar- or vector-valued functions with regularity exponent����� , endowed with the usual norm ����� ��� � and seminorm ����� ��� � . We write � 
; ��� �
for the subspace of � 
 ��� � of functions with zero trace and set @ 3 ��� ��� ��� ; ��� ��� .
For the computational domain

�! � � , we let

� �#"%$'& ;(*),+ � �!�.-0/ 	 @ 3<� � � � � ) � � 4 0 / �!� � in
�21

� ��"%$3& ; + � �!� - / 	 @ 3 � � � � � ) ��/ � � in
� 1 �

equipped with the @ 3 � � � � -norm. We shall also need to use the standard spaces

� �#465%7�8 + � ���.-0/ 	 @ 3<� � � � � )+* / 	 @ 3<� � � � 1� ; ��46597:8 + � ���<;�/ 	�� �#465%7�8 + � �=� A * / � B on � �=> �
endowed with the norm

�?/@� 3	#ACBED � F �G�?/@� 3; � FIH � )+* /J� 3; � F "
Furthermore, let @ 3( ) � � � � denote the space of square integrable functions on

�
equipped with the inner product

� /!�:K � ( ) �ML F
4 0 /N�OKP� ��"

We consider the @ 3( ) � � ��� -orthogonal Helmholtz decomposition of the function �%	� ; ��4,5%7:8 + � � given by � �	/ H ) � , where / 	.� ; ��46597:8 + � �RQS� �#"%$'& ;(*),+ � � and
� 	T� 
; � � � , see [36].

Using this decomposition, problem (1)–(2) can be reformulated as follows: find/ 	�� �#465%7�8 + � � and
� 	�� 
 � � � such that

)K* ,�. 
0 )+* / �21�3�4 0 / � 1�3=4 0 ) � � 6 in
�

(3)) � � 4 0 //� � � in
�

(4)A * / ��B on � � (5)
� � � on � � " (6)

We start by showing well-posedness of problem (3)–(6).

Proposition 1 Assume that
1 3

is not a Maxwell eigenvalue. Then problem (3)–(6)
has a unique solution

� /!� � �:	U� ; �#465%7�8 + � �VQN� �#"%$'& ;(W) + � � * � 
; � � � , with
, . 
0 )+*

/ 	�� �#465%7�8 + � � , and we have the stability estimates

�?/J� 	#ACB'D � FYX�ZR[3\ � � � 6]� ; � F � � � � 
 � F^X 1 . 3 ZR_ D`D � 6]� ; � F �
5



with positive constants Z [3\ � � and ZR_ D`D , ZR_ D`D independent of
1

.

Proof Consider the Helmholtz decomposition of 6 as a function in @ 3 � � � � , 6 ��#; H )�� with
�#; 	 � ��"9$'& ; + � � and

� 	 � 
; � � � . Owing to the orthogonality of
this decomposition, problem (3)–(6) decouples into two independent subproblems,
namely into the Maxwell problem with divergence free data

)+*-,�. 
0 )+* / �21�3�4 0 / � �#; in
�

) � � 4 0 //�!� � in
�

(7)A * / �7B on � � �
and the elliptic problem

� 1 3�) � � 4 0 ) � �!��� in
� � � � � on � � � (8)

with right hand side � 	.� . 
 � � � defined by � ��� � � ��� F )	� � )
� � � , for all� 	 � 
; � � � . Existence and uniqueness of solutions to (7) follow now in a standard
way from Fredholm theory and the coercivity of the form

� F , . 
0 ) * /Y� ) * KI� �
on the space � ; �#465%7�8 + � � Q � ��"9$'& ;( )6+ � � (see [36, Proposition 2.7]). Furthermore,, . 
0 )+* / 	�� ��46597:8 + � � and

�?/J� 	#ACB'D � FYX�ZR[3\ � � � �#; � ; � FYX�ZR['\ � � � 6�� ; � F �
with a stability constant Z ['\ � ��� � depending on

�
,
, 0 , 4 0 and on the wave number1 3

. For problem (8), existence and uniqueness follows from standard elliptic theory,
and we have

� � � 
 � F^X 1 . 3 ZR_ D`D �
� � . 
 � FYX 1 . 3 ZR_ D`D � )�� � ; � FYX 1 . 3 ZR_ D`D � 6�� ; � F �
with Z _ D`D � � only depending on

�
and

4 0 . �

In our duality approach in section 6 we will also make use of the following regu-
larity result.

Proposition 2 For smooth coefficients
, 0 and

4 0 , there exists a regularity exponent� � � � � � � 
3 such that the solution / in (3)–(6) satisfies /G	 ��� � � � � and)+* / 	���� � � � � . Furthermore,

�?/@� �?� F H � )+* /@� �?� FNX�Z B _�� � 6]� ; � F �
with a positive constant Z B _�� depending on

1 3
,
, 0 and

4 0 .

Proof By decoupling problem (3)–(6) into (7) and (8), we see that the solution /
of (7) satisfies

)+* / 	 @ 3 � � � � , ) ��/ 	 @ 3 � � � � (here we use the assumption that4 0 is smooth, so that
4 0 ) � /�� ) � � 4 0 / � �%)
4 0 � / holds true) and A * / �+B

on � � . From [37, Proposition 3.7], it follows that / 	������ � � � � for � 
 �

3 and
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�?/J� ����� F�X�Z � � ���?/@� 	#ACBED � F with an embedding constant Z � � � just depending on
�

.
Thus, from Proposition 1, we have �?/@� ����� F^XMZ 
 � 6]� ; � F .
Now set � � , . 
0 ) * / . From the first equation in (7), we have

) * � � � ; H1 3 4 0 / 	-@ 3 � � � � . Furthermore,
) � � , 0 � �!� � and

, 0 � � A � ) * / � A � � on � � .
Since

, 0 is smooth, using again [37, Proposition 3.7], it follows that � 	�� � � � � � �
for � 3 � 
3 and � � � � � � FGX Z � � � � � � 	#ACB'D � F X Z � � � , 0 � � � ) * /J� 3; � FNH � � ; H1 3 4 0 /@� 3; � F � �� . Hence, from the triangle inequality and Proposition 1, we conclude
that � � � � � � FUX]Z 3 � 6]� ; � F . Choosing � $ ��� $�� ; � 
 � � 3 > and Z B _ � �����<� ; Z 
 � Z 3 >
completes the proof. �

Remark 3 If the polyhedron
�

is convex and
, 0 � 4 0 � � , the parameter � in

Proposition 2 can be chosen as � �<� , see [37].

3 Discontinuous Galerkin discretization

In this section, we introduce stabilized interior penalty discontinuous Galerkin dis-
cretizations for the Maxwell system (3)–(6).

3.1 Triangulations

Let
�
	

be a regular triangulation of the domain
�

into tetrahedra. We denote by
���

the diameter of the element 
 and set
� �����<� ������� ��� . The diameter of the face�

is denoted by
���

. We also assume the triangulation to be shape regular, that is,
there is a positive constant � such that, for any 
 	 ��	 ,

���
� � X � �

where � � is the diameter of the biggest ball contained in 
 (see [38, p. 124]).

Let � be the union of all the faces of
��	

, and ��� the union of the internal faces. We
define the function � in @�� � ��� by

� � � � ���!� ���
if �H	 � "

3.2 Trace operators

First, we need to define some notation concerning functions in � � � �
	 � $ � ;"! $
!�� � 	 �N� � 
 ���#
 	 �
	 > , for � � 
3 . The elementwise traces of such functions
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belong to
��� � � � $ � � ��� � � @ 3 � ��
 � ; they are double-valued on � � and single-

valued on ���#� � . The space @ 3 � � � can be identified with the functions in
��� � � �

for which the two trace values coincide.

Next, we introduce certain trace operators. To this end, fix � 	 ��� � � � � and � 	��� � ��� , and let �  ��� be an interior face shared by the elements 
 
 and 
 3 . LetA	� be the normal unit vector pointing exterior to 
 � and � � � � � 
 ���
, � � �
� � 
 ���

(
� � � ��
 ). Then we define for �+	�� the average, the tangential jump and the

normal jump of � as follows:

; ; � > > � �
 � � 
 H � 3 � � � ��� ��� � A 
 * � 
 H A 3 * � 3 � � ��� ��� � � 
 � A 
 H � 3 � A 3 "
Similarly, we define for �
	�� the average and the normal jump of � by

; ;�� > > � �
 � � 
 H � 3 � � ��� � ��� ��� 
 A 
 H � 3 A 3 "
Then, on any boundary face �  ��� � � , we set for �H	��

; ; � > > � � � � ��� ��� � A * � � ��� � ��� ��� A "
Since we will not require either of the quantities ; ;�� > > and � � ��� ��� on the boundary
��� ��� , we leave them undefined.

If � 	�� �#465%7�8 + � � , then, for all �  ��� , the jump condition A 
 * � 
 H A 3 * � 3 �7B
holds true in � . ��; ; � � � � , and thus also in @ 3 � � � � (for the definition of � . ��; ; � � � , see,
e.g., [39]). Therefore, � � ��� � � is equal to zero on � � . Similarly, for � 	 � ��"%$3& + � � ,
we have that � � ��� ��� is well-defined and equal to zero on � � . Furthermore, for the
exact solution /H	U� ; ��46597:8 + � �%Q � ��"%$3& ;(W)6+ � � , we have � � / � �!� � B in @ 3 � � � � for any
boundary face � , in addition to � � / � � � ��B and � � 4 0 / � ��� � � on � � .

3.3 Stabilized interior penalty discontinuous Galerkin methods

We approximate / and
�

in the discontinuous finite element space " 	 *�# 	
where

" 	 �<; K 	-@ 3 � � � � $=KJ� � 	%$'& � 
 � � �	(�
 	 �
	 ># 	 �<; � 	 @ 3<� � ��$ � � � 	%$ & � 
 � �	(�
 	 � 	 > �
for an approximation order ) � � , with $ & � 
 � denoting the space of polynomials
of degree at most ) on 
 .

We consider the following discontinuous Galerkin method: find
� / 	 � � 	 � 	%" 	 **# 	
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such that, for any
� K � � � 	%" 	 *�# 	

,

� � / 	 �:K � H � � / 	 �:K � H � � / 	 �:K � � 1�3 � / 	 ��K � ( ) H � � K � � 	 � ��� � K � (9)� � / 	 � � � � � � � 	 � � � � � " (10)

Here,

� � /!�:K � � L F
,�. 
0 ) 	 * /N� ) 	 * KI� � � L�� � � / � �!� �0; ; ,�. 
0 ) 	 * K > > � �

� L�� � � K � �!� � ; ; ,�. 
0 ) 	 * / > > � �
� � K � � � � 1�3 L F

� ) 	 � � 4 0 K �%� � � 1�3 L ��� ; ; � > > � � 4 0 K � ��� � �
� � /!�:K � �
	 L�� � . 

� . 
 � � / � ��� � � � K � ��� � �
� � / ��K ��� 1�3�� L�� � � � � 4 0 / � ��� � � 4 0 K � ��� � �

H 1�3��������� � � 3 � L � ) 	 � � 4 0 //� ) 	 � � 4 0 K �%� �
� � � � � � � 1 3�� L � � . 
�� � � � � ��� � � � � � ��� � � H 	 L � � . 
 � . 
 � � ) 	 � � ��� � � � ) 	 � � �!� � � �

with
) 	 *

,
) 	 � and

) 	
denoting the elementwise curl, divergence and gradient,

respectively, and the functions
�

and
�

are defined on � as the restriction to � of, 0 and
4 0 , respectively. The parameters 	 ,

�
and

�
in the forms � , � , and � are

positive. The purpose of these forms is to stabilize the method. The functional � at
right-hand side of (9) is

� � K ����L F 6 �6K � ��"
Let us discuss the following points about this method:

� The form � � � �O� � H � � � �O� � corresponds to the interior penalty discretization of the
curl-curl operator, cf. [28]; it is symmetric and stable provided that the parameter
	 is large enough (see Lemma 14 below). The nonsymmetric variant of the interior
penalty discretization is obtained by replacing � by

� � /!�:K ��� L F
, . 
0 ) 	 * /N� ) 	 * KP� � H L � � � / � ��� �0; ; , . 
0 ) 	 * K > > � �

� L � � � K � �!� �0; ; ,�. 
0 ) 	 * / > > � � " (11)

Then the form � � � �6� � H � � � �O� � is nonsymmetric, but stable for any 	 � � (see Re-
mark 15 below). In the following we will only present the analysis for the symmet-
ric method in (9)-(10), but emphasize that the error estimates so obtained hold true
verbatim for its nonsymmetric variant.

� The form
� � � �O� � discretizes the divergence constraint in the mixed formulation

(3)–(6) by means of DG techniques, similar to the forms used in [40] for the Stokes
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system. Notice that, after integration by parts, the form
� � � �6� � can also be expressed

by

� � K � � ��� � 1�3 L F
4 0 KN� ) 	 � � � H 1 3 L�� � � � � ��� � ; ; 4 0 K > > � � � � K � � � 	%" 	 *�# 	 "

� The forms � � � �O� � and � � � �O� � provide stabilization. While � � � �O� � is related to the
divergence constraint, the form � � � �6� � provides stability via control of jumps of the
scalar potential

�
. We found it necessary to include these forms in order to be able

to prove optimal error estimates with our techniques of analysis. Whether or not
similar results can actually be obtained without these stabilization forms remains
an open question and will be investigated numerically in a forthcoming work.

� By elementary manipulations the third term in the form � � � �6� � can be expressed
by

� L�� � � K � �!� �0; ; ,�. 
0 ) 	 * / > > � � � ���� � L 
 � KY� A � * � ,/. 
0 ) 	 * / � � �
� L � � ; ; K > > � � � ,/. 
0 ) 	 * / � �!� � � � (12)

for all / ��K 	�" 	 , where A � is the outward normal unit vector to ��
 . For the exact
solution / we have / 	T� ; ��46597:8 + � � and

, . 
0 ) * / 	�� �#465%7�8 + � � . Thus, � � / � �!� �7B
on � and � � , . 
0 ) 	 * / � �!� �7B on ��� , and, with (12), � � / �:K � has to be understood as

� � /!�:K ���]L F
,/. 
0 ) 	 * /Y� ) 	 * KI� � H ���� � L 
 � KT� A � * � ,/. 
0 ) 	 * / � � � �

for K 	�" 	 , where the boundary integrals are in fact duality pairings.

Let us now address the consistency of the method.

Proposition 4 The discontinuous Galerkin method in (9)–(10) is consistent, i.e.,
the exact solution

� /!� � � of problem (3)–(6) satisfies (9)–(10), for all test functions� K � � � 	%" 	 *�# 	
.

Proof We have /7	 � ;<�#465%7�8 + � � , , . 
0 ) * /�	 � �#465%7�8 + � � and /�	 � �#"%$'& ;( )6+ � � .
Thus, � � / � ��� � B on � , as well as � � 4 0 / � ��� � � and � � , . 
0 ) 	 * / � ��� � B on � � .
Moreover,

� 	 � 
; � � � and
) � 	 � ; �#465%7�8 + � � and thus � � � � ��� � � and � � ) � � ��� � B

on � . The second equation (10) is then trivially satisfied for all
� 	 # 	

. From (12),
the first equation (9) reduces to

L F
,�. 
0 )+* /T� ) 	 * KI� � H ���� � L 
 � KT� A � * � ,�. 
0 ) 	 * / � � �

�21�3 L F
4 0 /T�OKI� � H 1 3 L F

� ) 	 � � 4 0 K �%� � �21�3 L�� � ; ; � > > � � 4 0 K � ��� � � �ML F 6 �,K � ���
10



for K 	
" 	 . Integration by parts over each element 
 , taking into account the
boundary condition for / and

�
, yields

L F
� )+*-, . 
0 )+* / �21 3 4 0 / �21 3 4 0 ) ��� �6KI� �-� L F 6 �OKP� � �

which is satisfied for all KH	%" 	 . �

Remark 5 Note that the regularity of the solution stated in Proposition 2 as con-
sequence of the smoothness assumption on the coefficients is needed neither in the
definition of the method, nor in the proof of Proposition 4. As a matter of fact, the
method is defined and consistent for piecewise smooth coefficients

, 0 and
4 0 . In

this case, the functions
�

and
�

have to be adjusted by taking the corresponding
averages, i.e., by taking

� � ; ; , 0 > > and
� � ; ; 4 0 > > on � .

Remark 6 The analysis developed in the following sections makes use of con-
forming projection operators, and therefore only covers the case of meshes that
do not contain hanging nodes. On the other hand, the DG method is well-defined
for general non-matching grids. In this case, the interior faces are understood as
the (non-empty) interiors of the intersections between two adjacent elements and
the function � has to be redefined on � as

� � � � ���!�
��� ��


3 � ��� H ����� � if �
	�� � � 
 Q ��

	
���

if �
	 �  ��
 Q � � "

4 The main result

In this section, we present and discuss our main result – an optimal a priori error
estimate for the DG method in (9)–(10). The proof of this bound is developed in
section 5 and section 6; it is based on a suitable duality argument that heavily relies
on the regularity result of Proposition 2, and therefore the assumption of smooth
coefficients

, 0 and
4 0 is essential. Moreover, in order to simplify the presentation,

we restrict ourselves to the case
, 0 � 4 0 � � . The extension to general smooth

coefficients is straightforward.

Define the spaces

" � � � $ � " 	 H � � ; ��4,5%7:8 + � ��QY� �#"%$'& ; + � ��� # � � ��$ � # 	 H � 
; � � � �
and the broken norm � � � � /!� � � � � � 	 given by

� � � � / � � � � � � 3	 � 1�3 �?/@� 3; � FIH 1�3 � ) 	 � � 3; � FIH � � /!� � � � 3	 �
11



where the seminorm � � / � � � � 	 is given by

� � /!� � � � 3	 � � ) 	 * /J� 3; � FPH 	N� � . �� � � / � �!� � 3; � � H 1 3 � � � �� � � / � ��� � 3; � � �
H 1�3 � ���� � � � 3 � � ) ��/J� 3; � � H 1 3 � � � . �� � � � � ��� � 3; � � H 	^� � . �� � � ) 	 � � �!� � 3; � � "

It is easy to see that � � � � � �O� � � � � 	 is actually a norm in " � � � *�# � � � .
Our main result establishes error estimates in the norm � � � � / � � � � � � 	 .
Theorem 7 Assume that the exact solution

� / � � � of the continuous problem (3)–
(6) satisfies

/ 	�� � � � � � )+* / 	�� � � � � � � 	�� � � 
 � � � � � �
 � (13)

and let
� / 	 � � 	 � be the discrete solution obtained by the DG method (9)–(10).

Then, there exists positive constants 	 ; and
� ;

, with 	 ; � 	 ; � �>� ) � and
� ; �� ;<� �>� ) � ZR_ D`D � , such that for 	 � 	 ; and

� � � ;
we have the error bound

� � � � / � / 	 � � � � 	 � � � � 	 X�Z ��������� & � � 	 � �?/J� ��� F H � )+* /@� ��� F H � � � � � 
 � F � �
provided that

� X � ;
for some

� ; � � ; � �>� ) � 1 � Z B _�� � 	 � � � � � � � � � .
Remark 8 Theorem 7 guarantees optimal a priori error bounds provided that the
stabilization parameters 	 and

�
are large enough. Restrictions of this type are

typically encountered in interior penalty methods (see, e.g., [28,41]). It is worth
noting that 	 ; and

� ;
are independent of the wave number

1 3
.

Remark 9 Note that the smoothness assumptions / 	 � � � � � � and
) * / 	�T� � � � � follow from Proposition 2, whereas the assumption

� 	U� � � 
 � � � does not
seem to hold true for general source terms 6 in @ 3 � � � � . This lack of smoothness in
the potential

�
for general right hand sides will be the major difficulty in our duality

argument in section 6 below and is the reason why we introduced the stabilization
forms � � � �O� � and � � � �O� � . We also point out that for divergence free source terms 6
(often encountered in practice) we have

� � � and the assumption
� 	T� � � 
 � � � is

trivially satisfied.

Proceeding along the lines of [42], we can conclude from the a priori error estimates
in Theorem 7 existence and uniqueness of discrete solutions.

Corollary 10 For 	 � 	 ; and
� � � ;

, the DG method (3)–(4) admits a unique
solution, provided that

� X � ;
.

Proof We need only establish that if 6 � B , the only solution is / 	 � B and
� 	 � � . But if 6 � B , then /5� B ,

� � � and the estimate of Theorem 7 implies
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� � � � / 	 � � 	 � � � � 	 X � for
� X � ;

. Since � � � � � �O� � � � � 	 is a norm on " 	 * # 	
, we conclude

that / 	 �7B and
� 	 � � . �

The proof of Theorem 7 is developed in section 5 and section 6. First, we rewrite
the DG method in a non-conforming fashion, using lifting operators similar to the
ones introduced in [28], and prove an inf-sup condition. Then, we derive an abstract
error estimate which can be viewed as a variant of Strang’s lemma. This is done in
section 5. Finally, in section 6, we make explicit the error estimates for the principal
part of the problem and then for the @ 3 -norm of the error by a duality approach
where we need

�
to be large enough.

5 Abstract error estimates

In this section, we prove an abstract error estimate for our DG method. The key
ingredient to obtain this estimate is an inf-sup condition which we prove in Propo-
sition 17, following an argument often used in the analysis of stabilized finite ele-
ments in Stokes flow (see, e.g., the survey article [43] and the references therein).

5.1 A global bilinear form

For the purpose of our analysis, we replace the integrals over interelement bound-
aries by volume integrals given in terms of the lifting operators

� $ @ 3 � � � � & " 	
and � $ @ 3 � ����� & # 	

defined by

L F
� � K � � � � � �]L�� KN� ; ; � > > � � ( � 	%" 	

L F � � !�� � � � �]L�� � ! ; ; � > > � � ( � 	 # 	 "
We also need the lifting operator � $ @ 3 � � ��� & " 	 defined by

L F � � !�� � � � � � L � � ! � � ��� ��� � � ( � 	�" 	 "
Consider the forms � D � � \ � � �O� � and

� D � � \ � � �O� � given by

� D � � \ � / ��K ��$ � L F
) 	 * /N� ) 	 * KP� �

� L F
� � � � � / � �!� � � � ) 	 * K � H � � � �`K � ��� � � �F) 	 * //��� � �

� D � � \ � K � � � $ � 1 3 L F
� ) 	 �OKP� � �21 3 L F � � � � K � ��� � � � ��"
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Again, by integration by parts, we have

� D � � \ � K � � ��� � 1 3 L F KT�
) 	 � � � H 1 3 L F

� � � � � � ��� � �OK � ��� ( � K � � ��	%" 	 *�# 	 "
For discrete test and trial functions, the forms � D � � \ � � �O� � and

� D � � \ � � �O� � coincide with� � � �6� � and
� � � �6� � . However, this is no longer true for continuous functions, due to the

discrete nature of the lifting operators. Nevertheless, we carry out our analysis in
terms of the forms � D � � \ � � �O� � and

� D � � \ � � �O� � since they have more favorable continuity
and coercivity properties and take into account the inconsistency of the forms by a
variant of Strang’s lemma.

Introducing the global form
� 	 � /!� � + K � � � defined by

� 	 � /!� � + K � � � $ � � D � � \ � /!�:K � H � � /!�:K � H � � / �:K � � 1 3<� /!�:K �
H � D � � \ � K � � � � � D � � \ � /!� � � H � � � � � � �

we can rewrite the DG method (9)–(10) in the following compact form:
Find

� / 	 � � 	 ��	%" 	 * # 	
such that

� 	 � / 	 � � 	 + K � � � � � � K ��� (14)

for all
� K � � � 	�" 	 *�# 	

.

5.2 Stability of the lifting operators

The following standard inverse inequalities (see, e.g., [38]) will be useful in the rest
of the paper.

Lemma 11 For polynomials � 	%$ & � 
 � , we have

��� � ; � 
 � X�Z ����� � . ��� ��� � ; � � � � � 
 � � X�Z ����� � . 
� ��� � ; � � �
with a constant Z ����� � � only depending on the shape regularity constant � and
the polynomial degree ) .

We start by establishing stability estimates for the lifting operators.

Proposition 12 Let
�

and � be the lifting operators defined above. We have that,
for all K 	%" � � � and for all

� 	 # � � � ,
� � � � � K � �!� ��� ; � F^X�Z D � � \ � � . �� � � K � �!� � ; � � � � � � � � � ��� ��� ; � F^X�Z D � � \ � � . �� � � � � ��� � ; � �� � � � � K � ��� � � ; � FYX!Z D � � \ � � . �� � �`K � ��� � ; � � � ��� � � � K � ��� ��� ; � FNX�Z D � � \ � � . �� � �`K � ��� � ; � � �

with a constant Z D � � \ only depending on � and ) .
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Proof We prove the first estimate. Given K � � 	 H � 	 " � � � , observe that
� �`K � ��� � � � � 	 � ��� on � . By the definition of the operator

�
and the Cauchy-Schwarz

inequality, we have

� � � � �`K � ��� ��� ; � F � � 5 �� ��� �
� F � � � �`K � ��� � ���R� ���� � ; � F � � 5 �� ��� �

� � � �`K � ��� �0; ;�� > > � ���� � ; � F
X � 5 �� ��� �

� � . �� � � K � ��� � ; � � � � �� ; ;�� > > � ; � ���� � ; � F "

Then, by using the definitions of ; ; � > > and � , and the first inverse inequality in
Lemma 11, we obtain

� � �� ; ;�� > > � 3; � � X�Z �������� ��� ��� � 3; � 
 � X�Z ���� ��� ��� � 3; � � � Z ��� � 3; � F "
This proves the first estimate. The other estimates are obtained similarly. �

5.3 Continuity

We can state the following continuity properties.

Proposition 13 There exists a positive constant Z only depending on � and ) such
that, for all

� / � � ��� � K � � � 	�" � � � *�# � � � ,
� � D � � \ � /!�:K ��� X�Z � � � � / � � � � � � 	 � � � � K � � � � � � 	 � � � /!�:K ��� X�Z � � � � / � � � � � � 	 � � � � K � � � � � � 	� � D � � \ � /!� � ��� X�Z � � � � /!� � � � � � 	 � � � � B � � � � � � 	 �`� � /!�:K ��� X�Z � � � � /!� � � � � � 	 � � � � K � � � � � � 	� � � � � � ��� X�Z � � � � B � � � � � � 	 � � � � B � � � � � � 	 "

Consequently, for all
� / � � ��� � K � � � 	%" � � � *�# � � � ,

� 	 � / � � + K � � � X�Z 	
	 � \ � � � � / � � � � � � 	 � � � � K � � � � � � 	 �
for a continuity constant Z 	
	 � \ � � only depending on � and ) .

Proof Using the first estimate in Proposition 12, we have

� � D � � \ � /!�:K ��� X � ) 	 * /J� ; � F � ) 	 * KJ� ; � F H � ) 	 * KJ� ; � F � � � � � / � ��� ��� ; � FH � ) 	 * /J� ; � F � � � � � K � �!� � � ; � FNX�Z � � � � / � � � � � � 	 � � � � K � � � � � � 	 "
Then, owing to the second estimate in Proposition 12,

� � D � � \ � /!� � ��� X 1 3 � ) 	 � � � � � � � � ��� � � ; � F �?/J� ; � FYX�Z � � � � /!� � � � � � 	 � � � � � � � � � � � 	 "
The estimates for � � � �O� � , � � � �O� � and � � � �O� � are straightforward. �
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5.4 Inf-sup condition

We show the stability of the form
� 	

in the following two steps: we start by prov-
ing, in Lemma 14, a Gårding inequality for the form

� 	
in terms of the seminorm� � � �O� � � 	 and then, in Lemma 16, a stability estimate for
� 	 � / � � + � ) 	 � � � � � ; by

combining these results, we obtain the inf-sup condition in Proposition 17.

Lemma 14 There exists a positive constant Z independent of
�

and
1

such that,
for all

� /!� � � in " 	 *�# 	
,

� 	 � /!� � + /!� � � � Z � � /!� � � � 3	 � 1�3 �?/@� 3; � F �
provided that 	 � Z 3D � � \ , where Z D � � \ is the constant in the estimates of Proposi-
tion 12.

Proof First, we prove the following coercivity property: for all / 	%" 	 ,
� D � � \ � /!�
/ � H � � / �C/ � � Z � � ) 	 * /@� 3; � FIH 	Y� � . �� � � / � �!� � 3; � � ��" (15)

Using the arithmetic geometric mean inequality � � � � X �3�� � 3 H �3 � � 3 , and the first
bound in Proposition 12, we have, for any

� � � ,
� D � � \ � /!�
//� H � � / �C/ �
�G� ) 	 * /@� 3; � F � 
 L F

) 	 * /N� � � � � / � ��� �%� � H 	^� � . �� � � / � �!� � 3; � ���� � � �
	�� � ) 	 * /@� 3; � F � 	 � � � � � � / � ��� ��� 3; � F H 	N� � . �� � � / � ��� � 3; � ���� � � �
	�� � ) 	 * /@� 3; � F H 	 � � � Z 3D � � \� � � � . �� � � / � ��� � 3; � � "

Owing to the assumption 	 � Z 3D � � \ , we can take Z 3D � � \	� � � 	 and obtain (15). Now,
since

� 	 � /!� � + /!� � � $ � � D � � \ � / �C/ � H � � / �
//� H � � / �
//� �
1 3 �?/J� 3; � F H � � � � � � , the result
immediately follows from the coercivity property (15) and from the definition of
the seminorm � � � �6� � � 	 . �

Remark 15 If we replace the form � D � � \ by its nonsymmetric variant derived from
(11), Lemma 14 holds true for any 	 � � . For the symmetric method in (9)–(10),
we will assume throughout the text that 	 satisfies 	 � Z 3D � � \ (the constant 	 ; in
Theorem 7 is actually Z 3D � � \ ).
Lemma 16 Let

� /!� � � 	 " 	 * # 	
. Then there exist positive constants Z 
 , Z 3 and

Z � independent of
�

and
1

such that

� � � �F) 	 � � � � � � � 	 X�Z 
 � � � � /!� � � � � � 	
� 	 � /!� � + � ) 	 � � � � � � Z 3 1�3 � ) 	 � � 3; � F � Z � � � /!� � � � 3	 � Z � 1�3 �?/J� 3; � F "
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Proof Let us first prove the continuity property. From Lemma 11, the following
bounds hold: � � �� � � ) 	 � � ��� � ; � � � X Z � ) 	 � � ; � F and � � � � ; � � X Z � . 
� � ) � � ; � � .
Then, from the definition of � � � � � �O� � � � � 	 , we obtain

� � � � ) 	 � � � � � � � 3	 � 
 1�3 � ) 	 � � 3; � FPH 
 	Y� � . �� � � ) 	 � � ��� � 3; � � H 1�3 � � � �� � � ) 	 � � ��� � 3; � � �H 1 3 � �������� � 3 � � � � � 3; � � H 1�3 � � � . �� � � � � ��� � 3; � �
X�Z 1 3 � ) 	 � � 3; � FPH 
 	Y� � . �� � � ) 	 � � ��� � 3; � � H 1 3 � � � . �� � � � � ��� � 3; � �X�Z 
 � � � � /!� � � � � � 3	 �

for any / 	%" 	 , with Z 
 � Z 
 � Z ��� � � � � .
In order to prove the bound for

� 	 � /!� � + � ) 	 � � � � � , we estimate separately the
bilinear forms that are involved. We consider first � D � � \ � / � � ) 	 � � . From Proposi-
tion 12:

� D � � \ � / � � ) 	 � �!� L F
� � � � ) 	 � � ��� � � ) 	 * /I� �

� � Z 3D � � \
 � � . �� � � ) 	 � � �!� � 3; � � � �
 � ) 	 * /J� 3; � F "
For � � � �O� � and � � � �O� � we have

� � /!� � ) 	 � ��� � 	 L � � . 
 � � / � ��� � � � ) 	 � � ��� � �� � 	 
 � � . �� � � / � ��� � 3; � � � 	 
 � � . �� � � ) 	 � � ��� � 3; � �
� � � � � � �!� � 1 3 � � � . �� � � � � ��� � 3; � � � 	 � � . �� � � ) 	 � � ��� � 3; � � "

Let us consider now
� D � � \ � � �O� � . We have again from Proposition 12 with arithmetic

geometric mean inequalities

� D � � \ � � ) 	 � � � ��� 1�3 � ) 	 � � 3; � F �21 3 L F
� � � � � � ��� � � ) 	 � � �

� 1 3
 � ) 	 � � 3; � F �
1 3 Z 3D � � \
 � � . �� � � � � ��� � 3; � �

and

� � D � � \ � /!� � � �!� �21�3 L F /Y�
) 	 � � � H 1�3 L F

� � � � � � ��� � ��/I� �
� ��� 
 1�3 �?/J� 3; � F �

1 3
��� � ) 	 � � 3; � F �

1 3 Z 3D � � \
 � � . �� � � � � ��� � 3; � � "
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For � � � �O� � , we have

� � /!� ) 	 � ��� �21�3 � L F � � ��� � / � ��� � � ) 	 � � � �21�3����������� � 3 � L � ) ��/ � � � �
� � � 1�3 � 3 Z 3D � � \ � � �� � � / � ��� � 3; � � �

1 3
��� � ) 	 � � 3; � F� � 1�3 Z 3 � 3 ���� � � � 3 � � ) � /@� 3; � � �

1 3
��� � ) 	 � � 3; � F �

where we used the estimates in Proposition 12, the inverse estimate � � � � ; � � XZ � . 
� � ) � � ; � � and arithmetic geometric mean inequalities with suitable weights.
Finally, we note that

1 3 � / � ) 	 � � � � � 1 3 �?/@� 3; � F �
1 3
��� � ) 	 � � 3; � F "

Adding together all the contributions from the bilinear forms we obtain the result
(with our choice of the weights, Z 3 � 
� ). �

We are now ready to prove the following inf-sup condition.

Proposition 17 There are positive constants Z 
 , Z 3 and Z � independent of
�

and1
such that, for any

� K � � � 	%" 	 *�# 	
, there is

� � � � � 	%" 	 *�# 	
such that

� � � � � � � � � � � 	 XMZ 
 � � � � K � � � � � � 	
� 	 � K � � + � � � � � Z 3 � � � K � � � � 3	 H 1 3 � ) 	 � � 3; � F � � Z � 1�3 �
KJ� 3; � F " (16)

Proof Set
� � � � � � � � K � � � � � ) 	 � � � � , combine Lemma 14 and Lemma 16 and

choose
�

large enough. �

5.5 A variant of Strang’s lemma

We prove the following abstract error estimate involving the residual
� 	 � /!� � + K � � � � � 	 � /!� � + K � � � � � � K ���

which takes into account the inconsistency of the formulation (14).

Theorem 18 There is a constant Z independent of
�

and
1

such that the error� / � / 	 � � � � 	 � satisfies

� � � � / � / 	 � � � � 	 � � � � 	 X=Z � $ ������ � �
	 ��� ����
�� � � �
� / � K � � � � � � � � 	

H � 5 ���� � ; 	��� ��� � ��	 ��� ����
��
� � 	 � / � � + � � � � �� � � � � � � � � � � 	 H 1 �?/ � / 	 � ; � F � "
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Proof Fix
� K � � � 	%" 	 *�# 	

. We split the error
� / � / 	 � � � � 	 � into

� / � / 	 � � � � 	 ��� � / � K � � � � � H � K � / 	 � � � � 	 ��� $ � ��� � ��� � H ��� � ���	� � "
We bound

��� � �
�
� � , which we may assume to be nonzero. By Proposition 17, there
exists a nonzero test function

� � � � � 	�" 	 * # 	
satisfying (16) with

� K � � � ���� � ���	� � . We obtain

� � � ��� � �
�	� � � � � 3	 � 1 3 � � � � 3; � FPH 1�3 � ) 	 �	�9� 3; � FPH � ��� � �
�
� � � 3	
X!Z � � 	 ��� � ���	� + � � � ��� H Z 1�3 � � � � 3; � FX!Z � � 	 � � � � ��� + � � � � � H Z � � 	 � /!� � + � � � ��� H Z 1 3 � � � � 3; � F
X!Z � . 
 � � � � � � � ��� � � � � 3	 H Z � . 
 � � 	 � / � � + � � � � � 3� � � � � � � � � � � 3	
H Z � � � � � � � � � � � � 3	 H Z 1�3 � � � � 3; � F
X!Z � . 
 � � � � � � � ��� � � � � 3	 H Z � . 
 � � 	 � / � � + � � � � � 3� � � � � � � � � � � 3	
H Z � � � � ��� � �
�
� � � � � 3	 H Z 1 3 � � � � 3; � F �

for any
� � � , where we used the definition of the residual

� 	
, the continuity

of
� 	

, arithmetic geometric mean inequalities and � � � � � � � � � � � 	 X	Z � � � ��� � �
�
� � � � � 	 .
Hence, the parameter

�
can be chosen such that

� � � ��� � �
�
� � � � � 3	 X!Z � � � � � � � ���<� � � � 3	 H Z � � 	 � / � � + � � � � � 3� � � � � � � � � � � 3	 H Z 1�3 � � � � 3; � F "
Since

1 3 � � � � 3; � F X 1 3 �?/ � / 	 � 3; � FIH 1 3 � � � � 3; � F , we have

� � � ��� � �
�
� � � � � 3	 X�Z � � � � � � � � ��� � � � � 3	
H � 5 ���� � ; 	 �� ��� � ��	 ��� ����
��

� � 	 � /!� � + � � � ��� 3� � � � � � � � � � � 3	 H 1�3 �?/ � / 	 � 3; � F � "
The assertion now follows by applying the triangle inequality and taking the infi-
mum over all

� K � � � 	%" 	 *�# 	
. �

Remark 19 The result of Theorem 18 holds true also in the case
� � � . The

positivity of
�

and the stability induced by the corresponding forms will be invoked
in the duality argument of the next section.

6 Error estimates

In this section, we make explicit the abstract error estimate in Theorem 18.
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6.1 Approximation properties

First, we review the approximation results for the @ 3 -projection, for standard � 

-

conforming and for curl-conforming Nédéléc operators.

Lemma 20 Let � 	 � � � 
 � , � �<� . Let � be the @ 3 -projection from � � � 
 � onto
$ & � 
 � . Then for � integer, � X � X � , we have

� � � � � � � � � X�Z � ����� � & � 
 � � 	 . �� � � � � � � "
Moreover, if � � 
3 ,

� � � � � � ; � 
 � X!Z � ����� � & � 
 � � 	 . ��� � � � � � � "
The constant Z only depends on � , ) and � .

Proof For natural numbers � , the first estimate follows from the classical Bramble-
Hilbert theory (see, e.g., [38]); for ��� � , it is a consequence of the stability of the
@ 3 -projection. For non-integer � , it can be obtained by interpolation. The second
estimate follows from the trace theorem from @ 3 � � 
 � to � � � 
 � , from the first
estimate, and scaling arguments. �

We also need a standard � 

-conforming approximant, see [38], and a Clément

operator, as constructed in [44].

Lemma 21 The standard nodal � 

-conforming interpolant ��� � $ � � � � 
 � � � Q� 
; � � � � & � # 	 Q^� 
; � � � � satisfies

� � � � � � � ��� � F^X�Z � ����� � & � 
 � � � 
 	 . � � � � � � 
 � F �K� � �O� �
for � � 
3 . The constant Z only depends on � , ) and � .
This lemma is proved in [38] for integer � , and can be proved for non-integer � by
using the arguments in [45].

For the Clément operator � Cl $ � 
; � � � & � # 	 QU� 
; � � � � , we recall the following
result (see, e.g., [44, pp. 109–111]).

Lemma 22 There exists a constant Z only depending on � and ) such that

������
� � � � � Cl

� � 3 
 � � H �#. 3� � � � � Cl
� � 3; � � H � . 
� � � � � Cl

� � 3; � 
 � � X�Z � � � 3 
 � F "
Finally, we establish the next lemma for curl-conforming Nédéléc operators.
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Lemma 23 Let
�

	#ACBED be the curl-conforming Nédéléc operator (either of the first
type [6] or of the second type [7]) into " 	 Q � ; �#465%7�8 + � � . Then, there exists a
constant Z � Z � �>� ) ����� such that, for any � 	�� ; �#465%7�8 + � � Q � � � � � � with

)'* � 	� � � � � � , � � 
3 ,

� � ��� 	�A:BED � � 	�A:BED � F^X�Z � ������� & � � 	 � � � � � � F H � )+* � � � � F ��" (17)

Moreover, if � also belongs to � ��"9$'& ; + � � ,
� � �� � � � ��� 	#ACBED ��� ��� � ; � � � X�Z � ����� � & � � 	 � � � � � � F H � )+* � � � � F �� ������ � � 3 � � ) � � � ��� 	#ACB'D � � � 3; � � � �� X�Z � ����� � & � � 	 � � � � � � F H � )+* � � � � F � "

Proof The first part is proved in [45, Section 5]. For the second part, denote by� � �
the @ 3 -projection onto " 	 . By using the triangle inequality, the approximation

results in Lemma 20, the first inverse estimate in Lemma 11, the @ 3 -stability of
� � �

and the first part of this lemma, we obtain

� � �� � � � ��� 	�A:BED ��� ��� � 3; � ���X�Z ���� � � ���
� � � ��� � � � � 3; � 
 � H � � � � � � ��� 	#ACBED � ��� 3; � 
 � �

X�Z ���� ��� � 3 ����� � & � 
 � � 	� � � � 3� � � H Z �������� � � � � � � ��� 	#ACB'D � � � 3; � �
X�Z � 3 ����� � & � 
 � � 	 � � � 3� � F H Z � � ��� 	�A:BED � � 3; � F
X�Z � 3 ����� � & � � 	 � � � � � � F H � )+* � � � � F � 3 "

To prove the last estimate, we integrate by parts and obtain

���� � � � 3 � � ) � � � ��� 	#ACB'D � � � 3; � �
� � ���� ��� � 3 � L � ) ) � � � ��� 	#ACBED � � � � � ��� 	#ACB'D � ��� �
H ���� � � � 3 � L 
 � ) � � � ��� 	#ACBED � � � � ��� 	#ACB'D � � � A � � � � $�� 
 H � 3 "

Let us first consider the volume term � 
 . Using the fact that
) � � � � , Cauchy-

Schwarz inequalities, the second inverse estimate in Lemma 11 and the first part of
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this lemma, we get

� 
 X � ���� ��� �
� � � ) ) � � 	#ACBED � � 3; � � � �� � � ��� 	#ACB'D � � ; � F

X�Z � ������ � � 3 � � ) � � 	#ACB'D � � 3; � � � �� � � ��� 	�A:BED � � ; � F
� Z � �������� � 3 � � ) � � � ��� 	#ACB'D � � � 3; � � � �� � � ��� 	#ACBED � � ; � F
X�Z � ������� & � � 	 � ���� ��� � 3 � � ) � � � ��� 	#ACB'D � � � 3; � � � �� � � � � � � F H � )+* � � � � F � "

Similarly, we can bound the term � 3 by

� 3 X � ���� ��� � � � � ) � � 	�A:BED � � 3; � 
 � � �� � �������� ��� � � ��� 	#ACB'D � � 3; � 
 � � ��

X � ���� ��� � 3 � � ) � � 	�A:BED � � 3; � � � ��� ������ � ��� � � ��� � � � � 3; � 
 � H � � � � � � ��� 	�A:BED � � � 3; � 
 � � ��

X�Z � ������� & � � 	 � ���� ��� � 3 � � ) � � � ��� 	#ACB'D � � � 3; � � � �� � � � � � � F H � )+* � � � � F � �
where we used the first inverse estimate in Lemma 11 for the term containing the
sum and proceeded as in the estimate of � � �� � � � � �

	#ACB'D ��� ��� � ; � ��� for the second
term. This completes the proof of the last estimate. �

6.2 Error in the principal part

We have the following estimate of the residual in Theorem 18.

Lemma 24 Let
� / � � � be the exact solution and assume that

) * / 	�� � � � � � and
� 	T�T� � 
 � � � , for � � 
3 . Then, for all

� K � � � 	 " � � � *�# � � � ,
� 	 � / � � + K � � � � L � � �`K � ��� �0; ; )+* / ��� � � � )+* / � > > � �

H 1�3 L � � � �`K � ��� ; ; � � � 
 � � > > � � �
where

� � �
and � 
 �

denote the @ 3 -projections onto " 	 and
# 	

, respectively.
Moreover, there exists Z independent of

�
such that

� � 	 � /!� � + K � � ��� X�Z � ����� � & � � 	 � � � � K � � � � � � 	 � � )+* /@� 3 ��� FPH � � � 3 � � 
 � F � �� "
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Proof By straightforward calculations involving integration by parts and taking
into account the definition of the lifting operators

�
and � , we have that, for any� K � � � 	 " � � � *�# � � � ,

� 	 � /!� � + K � � � � L � ; ; ) * / > > � � � K � �!� � � � L F
)K* /T� � � � �`K � ��� �%� �

H 1�3 L � � ; ; � > > � �`K � ��� � � �21 3 L F
� � � � � K � ��� �%� � "

Since

L F
)+* /N� � � � � K � �!� �%� � � L F

� � � �F)+* //� � � � � �`K � ��� �%� �
L F

� � � � �`K � ��� �%� � �]L F � 
 � � � � � � K � ��� �%� ��� (18)

we obtain the desired expression for
� 	 � /!� � + K � � � .

For the estimates of the residual, let us write
� 	 � /!� � + K � � � � $�� 
 H � 3 , where

� 
 �ML � � � K � ��� � ; ; )+* / ��� � � �F)+* K � > > � �
� 3 � 1�3 L � � � �`K � ��� ; ; � � � 
 � � > > � � "

By the Cauchy-Schwarz inequality, the definition of the norm � � � � � �O� � � � � 	 and the
second estimate of Lemma 20, we obtain the following bound:

� 
 X Z � � � � K � � � � � � 	 � ������ � ��� � ) * / ��� � � � )K* / � � 3; � 
 � � ��
X Z � � � � K � � � � � � 	 � �������� � 3 ����� � & � 
 � � 	� � )+* /@� 3 ��� � � �� "

Similarly,

� 3 X�Z � � � � K � � � � � � 	 � ���� ��� � . 
� � � � � 
�� � � 3; � 
 � � ��
X�Z � � � � K � � � � � � 	 � ���� ��� � 3 ����� � & � � 	� � � � 3 � � 
 � � � �� "

The estimate for
� 	

then follows. �

We are now ready to prove the following error estimate.

Corollary 25 Under the assumptions of Theorem 7, there exists a constant Z in-
dependent of the meshsize

�
such that

� � � � / � / 	 � � � � 	 � � � � 	 X�Z � ������� & � � 	 � �?/@� ��� F H � )
* /J� ��� F H � � � � � 
 � F � H Z 1 �?/ � / 	 � ; � F "
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Proof Consider the abstract estimate of Theorem 18 and bound the infimum by� � � � / � � 	#ACB'D /!� � � � � � � � � � � 	 , where
�

	#ACBED is the curl-conforming Nédéléc operator
and � � � the standard � 


-conforming interpolant from Lemma 21. Taking into ac-
count the approximation properties in Lemma 21 and Lemma 23 and the estimate
of the residual in Lemma 24, we obtain the result. �

6.3 Error in the @ 3 -norm

In order to complete our error analysis, we need to estimate the term
1 �?/ � / 	 � ; � F .

This is done in the next proposition by a duality approach. The main difficulty in
this argument is that we can not assume any smoothness for the scalar potential of
the dual solution. To overcome these difficulties we will have to make the stabiliza-
tion constant

�
large enough.

Proposition 26 Let � � 
3 be the regularity exponent from Proposition 2. Fur-
thermore, we assume that the exact solution satisfies the smoothness assumptions
in (13) with � � 
3 . Then we have

1 �?/ � / 	 � ; � FYX=Z 
 � ������� �?� 
 	 � � � � / � / 	 � � � � 	 � � � � 	 H Z 
 ��������� & � � 	 � � � � � 
 � F
H Z 3 � . �� � � � � / � / 	 � � � � 	 � � � � 	 �

with Z 
 � Z 
 � �>� ) � 1 � � � Z B _�� � � � � � and Z 3 � Z 3 � �>� ) � ZR_ D`D � .
Consequently, there exists

� ; � � ; � �>� ) � ZR_ D`D � such that for
� � � ;

1 �?/ � / 	 � ; � F^X �
 � � � � / � / 	 � � � � 	 � � � � 	 H Z � ������� & � � 	 � � � � � 
 � F �
provided that

� X � ;
for a constant

� ; � � ;<� �>� ) � 1 � Z B _�� � 	 � � � � � � � � � .
Proof The proof is given in several steps. We start by introducing a suitable adjoint
problem with right-hand side

1 3 � / � / 	 � , denoting by
�
� � � � its solution, and we

express
1 3 �?/ � / 	 � 3; � F as the sum of

� 	 � / � / 	 � � � � 	 + � � � 	#ACBED � � � � � Cl
� �

plus residual terms, with
�

	#ACB'D the curl-conforming Nédéléc operator into " 	 Q� ; ��4,5%7:8 + � � and � Cl the Clément operator into
# 	 Q � 
; � � � (step 1). Then, estimates

of the residuals (step 2) and of the bilinear forms in the definition of
� 	

give the
result (steps 3 and 4).

Step 1: A dual problem. Let
�
� � � � be the solution of the dual problem

)+* )+*
�
� 1�3

� H 1 3 ) � � 1 3 � / � / 	 � in
�

) ��� � � in
�

A * � �7B on � �
� � � on � � "

(19)
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By Proposition 1 and Proposition 2, we have

��� � �?� F H � )+*
� � ��� FNX�Z B _�� 1�3 �?/ � / 	 � ; � F� � � 
 � F^X�ZR_ D`D �?/ � / 	 � ; � F (20)

for a regularity exponent � � � � � � � 
3 . We may also assume that � X � . The main
problem in the following arguments is that we can not assume

�
to be smoother than

belonging to � 
; � � � .
The solution

�
� � � � of problem (19) satisfies

� 	 �
� � � � + K � � � � � 	 �

� � � � + K � � ��� 1�3<� / � / 	 �:K �
for all

� K � � � 	 � � � � 	 � � * � � � �
	 � , � � 
3 . Taking
� K � � �J� � / � / 	 � � � � � � 	 ��� ,

observing (13), we obtain

� 	 �
� � � � + / � / 	 � � � � � � 	 ��� � � 	 �

� � � � + / � / 	 � � � � � � 	 ���!� 1 3 �?/ � / 	 � 3; � F "
Since

� 	 � / � / 	 � � � � 	 + � 	 � � 	 �!� � 	 � /!� � + � 	 � � 	 ��� � � 	 � /!� � + � � �
	 � � � � 	 � ,

for all
�
�
	 � � 	 ��	%" 	 *�# 	

, and using the skew-symmetry properties of
� 	

, we can
write

1�3 �?/ � / 	 � 3; � F � � 	 � / � / 	 � � � � 	 + � � �
	 � � � � 	 � H � 
 H � 3 H �

� H � � � (21)

with residual terms

� 
 � � L � � � / � / 	 � ��� �0; ; )+*
�
��� � � �F)+*

� � > > � � �
� 3 � 1 3 L�� � � � / � / 	 � ��� ; ; � � � 
�� � > > � � �
�

� �
� L � � � � � �

	 � ��� � ; ; )+* / ��� � � � )+* / � > > � � �
� � � � 1�3 L � ��� � � � �

	 � ��� ; ; � � � 
 � � > > � � "
We define �

	 � �
	#ACBED � , so that

�

� � � , and
� 	 � � Cl

�
, with

�
	#ACB'D the curl-

conforming Nédéléc operator from Lemma 23 and � Cl the standard Clément oper-
ator which satisfy the approximation property of Lemma 22.

Step 2: The residuals. We estimate the residual expressions
� 
 ,

� 3 and
� � in (21)

(recall that
�

� � � ). Let us start with
� 
 . The Cauchy-Schwarz inequality and the

approximation properties in Lemma 20 yield

� 
 X�Z � � � � / � / 	 � � � � � � 	 � ������ � ��� � )+*
�
��� � � � ) *

� ��� 3; � 
 � � ��
X�Z � � � � � � / � / 	 � � � � � � 	 � )+*

� � �?� F "
Thus, from (20),

� 
 X!Z � � 1�3 � � � � / � / 	 � � � � � � 	 �?/ � / 	 � ; � F "
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The crucial term is
� 3 . Again from the Cauchy-Schwarz inequality, using the sec-

ond estimate of Lemma 20 and the stability estimates (20) for the dual solution, we
obtain

� 3 X!Z � 1 3 � � � �� � � / � / 	 � ��� � ; � � � � �� � 1�3 � . 
 ������ � � . 
� � � � � 
 � � � 3; � 
 � � ��
X!Z 1 � . �� � � � � / � / 	 � � � � � � 	 � � � 
 � FX!Z 1 � . �� � � � � / � / 	 � � � � � � 	 �?/ � / 	 � ; � F �

with Z � Z � �>� ) � ZR_ D`D � . Finally, for
� � we have

� � X�Z � � � � � ��� 	#ACBED � � � � � � � 	 � 1 3 � . 
 �������� � . 
� � � � � 
�� � � 3; � 
 � � ��
X�Z � ������� & � � 	 1 � � � � � ��� 	�A:BED � � � � � � � 	 � � � � � 
 � F "

Step 3: The term � � � � � ��� 	#ACBED � � � � � � � 	 . We claim that

� � � � � ��� 	#ACBED � � � � � � � 	 X�Z � � 1 �?/ � / 	 � ; � F � (22)

with Z � Z � �>� ) � 1 � Z B _ � � � � � � .
To see (22), we first note that, since the Nédéléc projection is curl-conforming,� � . �� � � � ��� 	#ACB'D � � ��� � ; � � � � . Furthermore, by (17) and (20),

� )+* �
�
���

	�A:BED � � � 3; � FPH 1�3 ��� ��� 	#ACB'D � � 3; � F X�Z � 3 � � ��� � �?� F H � )+*
� � ��� F � 3X�Z � 3 � 1 � �?/ � / 	 � 3; � F "

From the second and third estimates of Lemma 23 and (20), we have

1�3 � � � �� � � � ��� 	#ACB'D � � ��� � 3; � � � X�Z � 3 � 1 3 �?/ � / 	 � 3; � F1�3 � ���� � � 3 � � ) � � � ��� 	#ACBED � � � 3; � � X!Z � 3 � 1 3 �?/ � / 	 � 3; � F "
The proof of estimate (22) now follows from the definition of � � � � � ��� 	#ACBED � � � � � � � 	 .
Step 4: The assertion. We are now able to complete the proof Proposition 26.
Define

�
� � �

� �
	�A:BED � and ��� � � � � Cl

�
. From (21), taking into account

that, due to the conformity of the projectors
�

	#ACB'D and � Cl,
� � / � / 	 � � � ��� � and

� � � � � 	 �
��� ��� � , we have that
1�3 �?/ � / 	 � 3; � F � � D � � \ � / � / 	 � � � � H � � / � / 	 � � � � � 1�3<� / � / 	 � � � �

H � D � � \ ��� � � � � � 	 � � � D � � \ � / � / 	 �
��� � H � 
 H � 3 H �

� "
From the continuity properties of Proposition 13, we obtain

1 3 �?/ � / 	 � 3; � F X Z � � � � / � / 	 � � � � 	 � � � � 	 � � � ��� � � � � � � � 	
H � � D � � \ � / � / 	 ����� ��� H � 
 H � 3 H �

� �
(23)
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where we isolated the term
� D � � \ � / � / 	 �
��� � that needs to be treated separately. By

the Cauchy-Schwarz inequality we have

� � D � � \ � / � / 	 �
��� ��� 3
�

�
�
�
�

1�3 L F ��� ) 	 � � / � / 	 �%� � �
�
�
�

3
H

�
�
�
�

1�3 L F � � � � / � / 	 � ��� � ��� � � �
�
�
�

3

X!Z 3 � 1�3 � ���� � � � 3 � � ) 	 � � / � / 	 ��� 3; � � H 1 3 � � � � ��� � / � / 	 � ��� � � 3; � F �
� � 1�3 � . 
 ������ � � . 3� � ��� � 3; � � � �

with Z � Z � � � . Now, using the approximation property of Lemma 22 of the
Clément operator, the third estimate in Proposition 12, the second estimate in (20)
and the definition of � � � � / � / 	 � � � � 	 , we get

� � D � � \ � / � / 	 �
��� � � 3
XMZ 3 1 3 � . 
 � 1 3 � ���� � � � 3 � � ) 	 � � / � / 	 ��� 3; � � H 1 3 � � � �� � � / � / 	 � ��� � 3; � � � � � � � 3 
 � F
XMZ 3 1�3 � . 
 � � � � / � / 	 � � � � � � 3	 �?/ � / 	 � 3; � F �

where Z � Z � �>� ) � Z _ D`D � . Inserting this, (22) and the estimates for the residuals
obtained in Step 2 in (23) completes the proof. �

The proof of Theorem 7 follows now from Corollary 25 and Proposition 26.

7 Conclusions

In this paper, we have carried out an error analysis for stabilized interior penalty dis-
continuous Galerkin methods for the discretization of the indefinite time-harmonic
Maxwell equations. We have derived error estimates that are optimal, provided that
the stabilization parameters are large enough and the meshsize is small enough. A
numerical study of the proposed methods is the subject of ongoing work.
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